\[\boxed{\mathbf{837}\mathbf{.}}\]
\[1)\ f(x) = \sin(2x - 1)\]
\[f^{'}(x) = \left( \sin(2x - 1) \right)^{'} =\]
\[= 2\cos{(2x - 1)}\]
\[2)\ f(x) = \cos(x + 2)\]
\[f^{'}(x) = \left( \cos(x + 2) \right)^{'} =\]
\[= - \sin(x + 2)\]
\[3)\ f(x) = \sin(3 - x)\]
\[f^{'}(x) = \left( \sin(3 - x) \right)^{'} =\]
\[= - \cos(3 - x)\]
\[4)\ f(x) = \cos\left( x^{3} \right)\]
\[u = x^{3}\text{\ \ }f(u) = \cos u:\]
\[f^{'}(x) = \left( x^{3} \right)^{'} \bullet \left( \cos u \right)^{'} =\]
\[= 3x^{2} \bullet \left( - \sin u \right) = - 3x^{2} \bullet \sin x^{3}.\]