\[\boxed{\mathbf{836}\mathbf{.}}\]
\[1)\ f(x) = \sin x + x^{2}\]
\[f^{'}(x) = \left( \sin x \right)^{'} + \left( x^{2} \right)^{'} =\]
\[= \cos x + 2x\]
\[2)\ f(x) = \cos x - 1\]
\[f^{'}(x) = \left( \cos x \right)^{'} - (1)^{'} =\]
\[= - \sin x - 0 = - \sin x\]
\[3)\ f(x) = \cos x + e^{x}\]
\[f^{'}(x) = \left( \cos x \right)^{'} + \left( e^{x} \right)^{'} =\]
\[= - \sin x + e^{x}\]
\[4)\ f(x) = \sin x - 2^{x}\]
\[f^{'}(x) = \left( \sin x \right)^{'} - \left( 2^{x} \right)^{'} =\]
\[= \cos x - 2^{x} \bullet \ln 2.\]