\[\boxed{\mathbf{835}\mathbf{.}}\]
\[1)\ f(x) = 2\ln x + 3^{x}\]
\[f^{'}(x) = 2 \bullet \left( \ln x \right) + \left( 3^{x} \right)^{'} =\]
\[= 2 \bullet \frac{1}{x} + 3^{x} \bullet \ln 3 = \frac{2}{x} + 3^{x} \bullet \ln 3\]
\[2)\ f(x) = 3\ln x - 2^{x}\]
\[f^{'}(x) = 3 \bullet \left( \ln x \right)^{'} - \left( 2^{x} \right)^{'} =\]
\[= 3 \bullet \frac{1}{x} - 2^{x} \bullet \ln 2 = \frac{3}{x} - 2^{x} \bullet \ln 2\]
\[3)\ f(x) = \log_{2}x + \frac{1}{2x}\]
\[f^{'}(x) = \left( \log_{2}x \right) + \frac{1}{2} \bullet \left( \frac{1}{x} \right)^{'} =\]
\[= \frac{1}{x\ln 2} + \frac{1}{2} \bullet \left( - \frac{1}{x^{2}} \right) =\]
\[= \frac{1}{x\ln 2} - \frac{1}{2x^{2}}\]
\[4)\ f(x) = 3x^{- 3} - \log_{3}x\]
\[f^{'}(x) = 3 \bullet \left( x^{- 3} \right)^{'} - \left( \log_{3}x \right)^{'} =\]
\[= 3 \bullet ( - 3) \bullet x^{- 4} - \frac{1}{x\ln 3} =\]
\[= - 9x^{- 4} - \frac{1}{x\ln 3}\]
\[5)\ f(x) = \ln\left( x^{2} - 2x \right)\]
\[u = x^{2} - 2xf(u) = \ln u:\]
\[f^{'}(x) = \left( x^{2} - 2x \right)^{'} \bullet \left( \ln u \right)^{'} =\]
\[= (2x - 2) \bullet \frac{1}{u} = \frac{2x - 2}{x^{2} - 2x}\]
\[6)\ f(x) = \left( 3x^{2} - 2 \right) \bullet \log_{3}x\]
\[f^{'}(x) =\]
\[= \left( 3x^{2} - 2 \right)^{'} \bullet \log_{3}x + \left( 3x^{2} - 2 \right) \bullet \left( \log_{3}x \right)^{'} =\]
\[= 3 \bullet 2x \bullet \log_{3}x + \left( 3x^{2} - 2 \right) \bullet \frac{1}{x\ln 3} =\]
\[= \frac{6x \bullet \ln x}{\ln 3} + \frac{3x^{2} - 2}{x\ln 3} =\]
\[= \frac{6x^{2} \bullet \ln x + 3x^{2} - 2}{x\ln 3} =\]
\[= \frac{3x^{2} \bullet \left( 2\ln x + 1 \right) - 2}{x\ln 3} =\]
\[= \frac{3x \bullet \left( 2\ln x + 1 \right)}{\ln 3} - \frac{2}{x\ln 3}.\]