\[\boxed{\mathbf{834}\mathbf{.}}\]
\[1)\ f(x) = {0,5}^{x} + e^{3x}\]
\[f^{'}(x) = \left( {0,5}^{x} \right)^{'} + \left( e^{3x} \right)^{'} =\]
\[= {0,5}^{x} \bullet \ln{0,5} + 3e^{3x}\]
\[2)\ f(x) = 3^{x} - e^{2x}\]
\[f^{'}(x) = \left( 3^{x} \right)^{'} - \left( e^{2x} \right)^{'} =\]
\[= 3^{x} \bullet \ln 3 - 2e^{2x}\]
\[3)\ f(x) = e^{2 - x} + \sqrt[3]{x}\]
\[f^{'}(x) = \left( e^{2 - x} \right)^{'} + \left( x^{\frac{1}{3}} \right)^{'} =\]
\[= - e^{2 - x} + \frac{1}{3} \bullet x^{- \frac{2}{3}} =\]
\[= \ - e^{2 - x} + \frac{1}{3\sqrt[3]{x^{2}}}\]
\[4)\ f(x) = e^{3 - x} + \frac{1}{x^{4}}\]
\[f^{'}(x) = \left( e^{3 - x} \right)^{'} + \left( x^{- 4} \right)^{'} =\]
\[= - e^{3 - x} - 4x^{- 5} = - e^{3 - x} - \frac{4}{x^{5}}.\]