\[\boxed{\mathbf{800}\mathbf{.}}\]
\[Уравнение\ функции\ имеет\ вид:\ \ \]
\[y = ax^{2} + c.\]
\[\textbf{а)}\ (0\ 1)\ и\ (1\ 2):\]
\[1 = a \bullet 0^{2} + c = 0 + c = c\]
\[2 = a \bullet 1^{2} + 1 = a + 1\ \]
\[a = 2 - 1 = 1.\]
\[y(x) = x^{2} + 1\]
\[y^{'}(x) = \left( x^{2} \right)^{'} + (1)^{'} =\]
\[= 2x^{2 - 1} + 0 = 2x.\]
\[Ответ:\ \ y(x) = x^{2} + 1\ \ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }y^{'}(x) = 2x.\]
\[\textbf{б)}\ (0\ 1)\ и\ \left( \frac{3}{2}\ - \frac{3}{2} \right):\]
\[1 = a \bullet 0^{2} + c = 0 + c = c\]
\[- \frac{3}{2} = a \bullet \left( \frac{3}{2} \right)^{2} + 1 = \frac{9}{4}a + 1\]
\[a = \left( - \frac{3}{2} - 1 \right) \bullet \frac{4}{9}\]
\[a = - \frac{5}{2} \bullet \frac{4}{9} = - \frac{10}{9}.\]
\[y(x) = 1 - \frac{10}{9}x^{2}\]
\[y^{'}(x) = (1)^{'} - \frac{10}{9} \bullet \left( x^{2} \right)^{'} =\]
\[= 0 - \frac{10}{9} \bullet 2x^{2 - 1} = - \frac{20}{9}x.\]
\[Ответ:\ \ y(x) = 1 - \frac{10}{9}x^{2}\text{\ \ }\]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ }y^{'}(x) = - \frac{20}{9}\text{x.}\]