\[\boxed{\mathbf{799}\mathbf{.}}\]
\[1)\ f(x) = (2x - 1)^{2}\]
\[f^{'}(x) = 2 \bullet 2 \bullet (2x - 1)^{2 - 1} =\]
\[= 4(2x - 1)\]
\[(2x - 1)^{2} = 4(2x - 1)\]
\[(2x - 1)^{2} - 4(2x - 1) = 0\]
\[(2x - 1)(2x - 1 - 4) = 0\]
\[(2x - 1)(2x - 5) = 0\]
\[2x_{1} - 1 = 0\]
\[x_{1} = \frac{1}{2}\]
\[2x_{2} - 5 = 0\]
\[x_{2} = \frac{5}{2}.\]
\[Ответ:\ \ \frac{1}{2}\ \frac{5}{2}.\]
\[2)\ f(x) = (3x + 2)^{3}\]
\[f^{'}(x) = 3 \bullet 3 \bullet (3x + 2)^{3 - 1} =\]
\[= 9(3x + 2)^{2}\]
\[(3x + 2)^{3} = 9(3x + 2)^{2}\]
\[(3x + 2)^{3} - 9(3x + 2)^{2} = 0\]
\[(3x + 2)^{2} \bullet (3x + 2 - 9) = 0\]
\[(3x + 2)^{2} \bullet (3x - 7) = 0\]
\[3x_{1} + 2 = 0\]
\[x_{1} = - \frac{2}{3}\]
\[3x_{2} - 7 = 0\]
\[x_{2} = \frac{7}{3}.\]
\[Ответ:\ - \frac{2}{3}\ \frac{7}{3}.\]