\[\boxed{\mathbf{73}\mathbf{.}}\]
\[1)\ 2^{- 2}\ \ и\ \ 1;\]
\[- 2 < 0;\]
\[2^{- 2} < 2^{0};\]
\[2^{- 2} < 1.\]
\[2)\ (0,013)^{- 1}\text{\ \ }и\ \ 1;\]
\[- 1 < 0;\]
\[(0,013)^{- 1} > (0,013)^{0};\]
\[(0,013)^{- 1} > 1.\]
\[3)\ \left( \frac{2}{7} \right)^{5}\text{\ \ }и\ \ 1;\]
\[5 > 0;\]
\[\left( \frac{2}{7} \right)^{5} < \left( \frac{2}{7} \right)^{0};\]
\[\left( \frac{2}{7} \right)^{5} < 1.\]
\[4)\ 27^{1,5}\ \ и\ \ 1;\]
\[1,5 > 0;\]
\[27^{1,5} > 27^{0};\]
\[27^{1,5} > 1.\]
\[5)\ 2^{- \sqrt{5}}\text{\ \ }и\ \ 1;\]
\[- \sqrt{5} < 0;\]
\[2^{- \sqrt{5}} < 2^{0};\]
\[2^{- \sqrt{5}} < 1.\]
\[6)\ \left( \frac{1}{2} \right)^{\sqrt{3}}\text{\ \ }и\ \ 1;\]
\[\sqrt{3} > 0;\]
\[\left( \frac{1}{2} \right)^{\sqrt{3}} < \left( \frac{1}{2} \right)^{0};\]
\[\left( \frac{1}{2} \right)^{\sqrt{3}} < 1.\]
\[7)\ \left( \frac{\pi}{4} \right)^{\sqrt{5} - 2}\text{\ \ }и\ \ 1;\]
\[\pi \approx 3,14 < 4,\ значит\ \frac{\pi}{4} < 1;\]
\[5 > 4;\]
\[\sqrt{5} > 2;\]
\[\sqrt{5} - 2 > 0;\]
\[\left( \frac{\pi}{4} \right)^{\sqrt{5} - 2} < \left( \frac{\pi}{4} \right)^{0};\]
\[\left( \frac{\pi}{4} \right)^{\sqrt{5} - 2} < 1.\]
\[8)\ \left( \frac{1}{3} \right)^{\sqrt{8} - 3}\text{\ \ }и\ \ 1;\]
\[8 < 9;\]
\[\sqrt{8} < 3;\]
\[\sqrt{8} - 3 < 0;\]
\[\left( \frac{1}{3} \right)^{\sqrt{8} - 3} > \left( \frac{1}{3} \right)^{0};\]
\[\left( \frac{1}{3} \right)^{\sqrt{8} - 3} > 1.\]