\[\boxed{\mathbf{72}\mathbf{.}}\]
\[1)\ 3^{\sqrt{71}}\ или\ 3^{\sqrt{69}};\]
\[71 > 69;\]
\[\sqrt{71} > \sqrt{69};\]
\[3^{\sqrt{71}} > 3^{\sqrt{69}}.\]
\[2)\ \left( \frac{1}{3} \right)^{\sqrt{3}}\ или\ \left( \frac{1}{3} \right)^{\sqrt{2}};\]
\[3 > 2;\]
\[\sqrt{3} > \sqrt{2};\]
\[\left( \frac{1}{3} \right)^{\sqrt{3}} < \left( \frac{1}{3} \right)^{\sqrt{2}}.\]
\[3)\ 4^{- \sqrt{3}}\ или\ 4^{- \sqrt{2}};\]
\[3 > 2;\]
\[\sqrt{3} > \sqrt{2};\]
\[- \sqrt{3} < - \sqrt{2};\]
\[4^{- \sqrt{3}} < 4^{- \sqrt{2}}.\]
\[4)\ 2^{\sqrt{3}}\ или\ 2^{1,7};\]
\[300 > 289;\]
\[\sqrt{300} > 17;\]
\[\sqrt{3} > 1,7;\]
\[2^{\sqrt{3}} > 2^{1,7}.\]
\[5)\ \left( \frac{1}{2} \right)^{1,4}\ или\ \left( \frac{1}{2} \right)^{\sqrt{2}};\]
\[196 < 200;\]
\[14 < \sqrt{200};\]
\[1,4 < \sqrt{2};\]
\[\left( \frac{1}{2} \right)^{1,4} > \left( \frac{1}{2} \right)^{\sqrt{2}}.\]
\[6)\ \left( \frac{1}{9} \right)^{\pi}\ или\ \left( \frac{1}{9} \right)^{3,14};\]
\[\pi \approx 3,1415\ldots;\]
\[\pi > 3,14;\]
\[\left( \frac{1}{9} \right)^{\pi} < \left( \frac{1}{9} \right)^{3,14}.\]