\[\boxed{\mathbf{717}\mathbf{.}}\]
\[1)\ y = 1 + \cos x\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \cos x \leq 1;\]
\[0 \leq 1 + \cos x \leq 2;\]
\[E(y) = \lbrack 0;\ 2\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[1 + \cos(x + T) = 1 + \cos x;\]
\[T = 2\pi.\]
\[\textbf{г)}\ Функция\ четная:\]
\[y( - x) = 1 + \cos( - x) =\]
\[= 1 + \cos x = y(x).\]
\[\textbf{д)}\ 1 + \cos x = 0\]
\[\cos x = - 1\]
\[x = \pi - \arccos 1 + 2\pi n\]
\[x = \pi + 2\pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[1 + \cos x = 2;\]
\[\cos x = 1;\]
\[x = \arccos 1 + 2\pi n = 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[x = \pi + 2\pi n.\]
\[\textbf{з)}\ Возрастает:\]
\[\pi + 2\pi n < x < 2\pi + 2\pi n;\]
\[убывает:\]
\[2\pi n < x < \pi + 2\pi n;\]
\[положительна:\]
\[x \neq 2\pi n;\]
\[2)\ y = \cos{2x}\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \cos{2x} \leq 1;\]
\[E(y) = \lbrack - 1;\ 1\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[\cos\left( 2 \bullet (x + T) \right) = \cos{2x}\]
\[\cos(2x + 2T) = \cos{2x}\]
\[2T = 2\pi\]
\[T = \pi.\]
\[\textbf{г)}\ Функция\ четная:\]
\[y( - x) = \cos( - 2x) =\]
\[= \cos{2x} = y(x).\]
\[\textbf{д)}\ \cos{2x} = 0\]
\[2x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[\cos{2x} = 1;\]
\[2x = \arccos 1 + 2\pi n = 2\pi n;\]
\[x = \frac{1}{2} \bullet 2\pi n = \pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[\cos{2x} = - 1\]
\[2x = \pi - \arccos 1 + 2\pi n\]
\[2x = \pi + 2\pi n\]
\[x = \frac{1}{2} \bullet (\pi + 2\pi n)\]
\[x = \frac{\pi}{2} + \pi n.\]
\[\textbf{з)}\ Возрастает:\]
\[\frac{\pi}{2} + \pi n < x < \pi + \pi n;\]
\[убывает:\]
\[\pi n < x < \frac{\pi}{2} + \pi n;\]
\[положительна:\]
\[- \frac{\pi}{4} + \pi n < x < \frac{3\pi}{4} + \pi n;\]
\[отрицательна:\]
\[\frac{\pi}{4} + \pi n < x < \frac{3\pi}{4} + \pi n.\]
\[3)\ y = 3\cos x\]
\[\textbf{а)}\ D(x) = ( - \infty;\ + \infty);\]
\[\textbf{б)}\ - 1 \leq \cos x \leq 1;\]
\[- 3 \leq 3\cos x \leq 3;\]
\[E(y) = \lbrack - 3;\ 3\rbrack.\]
\[\textbf{в)}\ y(x + T) = y(x);\]
\[3\cos{(x + T)} = 3\cos x;\]
\[T = 2\pi.\]
\[\textbf{г)}\ Функция\ четная:\]
\[y( - x) = 3\cos( - x) =\]
\[= 3\cos x = y(x).\]
\[\textbf{д)}\ 3\cos x = 0;\]
\[\cos x = 0;\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[\textbf{е)}\ Максимальные\ значения:\]
\[3\cos x = 3;\]
\[\cos x = 1;\]
\[x = \arccos 1 + 2\pi n = 2\pi n.\]
\[\textbf{ж)}\ Минимальные\ значения:\]
\[3\cos x = - 3;\]
\[\cos x = - 1;\]
\[x = \pi - \arccos 1 + 2\pi n =\]
\[= \pi + 2\pi n.\]
\[\textbf{з)}\ Возрастает:\]
\[\pi + 2\pi n < x < 2\pi + 2\pi n;\]
\[убывает:\]
\[2\pi n < x < \pi + 2\pi n;\]
\[положительна:\]
\[- \frac{\pi}{2} + 2\pi n < x < \frac{\pi}{2} + 2\pi n;\]
\[отрицательна:\]
\[\frac{\pi}{2} + 2\pi n < x < \frac{3\pi}{2} + 2\pi n.\]