\[\boxed{\mathbf{715}\mathbf{.}}\]
\[1)\cos{2x} = \frac{1}{2}\]
\[2x = \pm \arccos\frac{1}{2} + 2\pi n\]
\[2x = \pm \frac{\pi}{3} + 2\pi n\]
\[x = \frac{1}{2} \bullet \left( \pm \frac{\pi}{3} + 2\pi n \right)\]
\[x = \pm \frac{\pi}{6} + \pi n;\]
\[\left\lbrack - \frac{\pi}{2};\ \frac{3\pi}{2} \right\rbrack:\]
\[x_{1} = - \frac{\pi}{6};\]
\[x_{2} = \frac{\pi}{6};\]
\[x_{3} = - \frac{\pi}{6} + \pi = \frac{5\pi}{6};\]
\[x_{4} = \frac{\pi}{6} + \pi = \frac{7\pi}{6}.\]
\[2)\cos{3x} = \frac{\sqrt{3}}{2}\]
\[3x = \pm \arccos\frac{\sqrt{3}}{2} + 2\pi n\]
\[3x = \pm \frac{\pi}{6} + 2\pi n\]
\[x = \frac{1}{3} \bullet \left( \pm \frac{\pi}{6} + 2\pi n \right)\]
\[x = \pm \frac{\pi}{18} + \frac{2\pi n}{3};\]
\[\left\lbrack - \frac{\pi}{2};\ \frac{3\pi}{2} \right\rbrack:\]
\[x_{1} = - \frac{\pi}{18};\]
\[x_{2} = \frac{\pi}{18};\]
\[x_{3} = - \frac{\pi}{18} + \frac{2\pi}{3} = \frac{11\pi}{18};\]
\[x_{4} = \frac{\pi}{18} + \frac{2\pi}{3} = \frac{13\pi}{18};\]
\[x_{5} = - \frac{\pi}{18} + \frac{4\pi}{3} = \frac{23\pi}{18};\]
\[x_{6} = \frac{\pi}{18} + \frac{4\pi}{3} = \frac{25\pi}{18}.\]