\[\boxed{\mathbf{714}\mathbf{.}}\]
\[y = \cos x:\]
\[возрастает\ на\ \lbrack\pi;\ 2\pi\rbrack;\]
\[убывает\ на\ \lbrack 0;\ \pi\rbrack.\ \]
\[1)\cos\frac{\pi}{5}\ и\ \sin\frac{\pi}{5};\]
\[\sin\frac{\pi}{5} = \cos\left( \frac{\pi}{2} - \frac{\pi}{5} \right) =\]
\[= \cos\left( \frac{5\pi}{10} - \frac{2\pi}{10} \right) = \cos\frac{3\pi}{10};\]
\[\frac{\pi}{5}\ и\ \frac{3\pi}{10}\ принадлежат\ \lbrack 0;\ \pi\rbrack -\]
\[функция\ убывает;\]
\[\frac{\pi}{5} < \frac{3\pi}{10}\]
\[\cos\frac{\pi}{5} > \cos\frac{3\pi}{10}\]
\[\cos\frac{\pi}{5} > \sin\frac{\pi}{5}.\]
\[2)\sin\frac{\pi}{7}\ и\ \cos\frac{\pi}{7};\]
\[\sin\frac{\pi}{7} = \cos\left( \frac{\pi}{2} - \frac{\pi}{7} \right) =\]
\[= \cos\left( \frac{7\pi}{14} - \frac{2\pi}{14} \right) = \cos\frac{5\pi}{14};\]
\[\frac{5\pi}{14}\ и\ \frac{\pi}{7}\ принадлежат\ \lbrack 0;\ \pi\rbrack -\]
\[функция\ убывает;\]
\[\frac{5\pi}{14} > \frac{\pi}{7}\]
\[\cos\frac{4\pi}{14} < \cos\frac{\pi}{7}\]
\[\sin\frac{\pi}{7} < \cos\frac{\pi}{7}.\]
\[3)\cos\frac{3\pi}{8}\ и\ \sin\frac{5\pi}{8};\]
\[\sin\frac{5\pi}{8} = \cos\left( \frac{\pi}{2} - \frac{5\pi}{8} \right) =\]
\[= \cos\left( \frac{4\pi - 5\pi}{8} \right) =\]
\[= \cos\left( - \frac{\pi}{8} \right) = \cos\left( \frac{\pi}{8} \right);\]
\[\frac{3\pi}{8}\ и\ \frac{\pi}{8}\ принадлежат\ \lbrack 0;\ \pi\rbrack - \ \]
\[функция\ убывает;\]
\[\frac{3\pi}{8} > \frac{\pi}{8}\]
\[\cos\frac{3\pi}{8} < \cos\frac{\pi}{8}\]
\[\cos\frac{3\pi}{8} < \sin\frac{5\pi}{8}.\]
\[4)\sin\frac{3\pi}{5}\ и\ \cos\frac{\pi}{5};\]
\[\sin\frac{3\pi}{5} = \cos\left( \frac{\pi}{2} - \frac{3\pi}{5} \right) =\]
\[= \cos\left( \frac{5\pi}{10} - \frac{6\pi}{10} \right) =\]
\[= \cos\left( - \frac{\pi}{10} \right) = \cos\frac{\pi}{10};\]
\[\frac{\pi}{10}\ и\ \frac{\pi}{5}\ принадлежат\ \lbrack 0;\ \pi\rbrack -\]
\[функция\ убывает;\]
\[\frac{\pi}{10} < \frac{\pi}{5},\]
\[\cos\frac{\pi}{10} > \cos\frac{\pi}{5}\]
\[\sin\frac{3\pi}{5} > \cos\frac{\pi}{5}.\]
\[5)\cos\frac{\pi}{6}\ и\ \sin\frac{5\pi}{14};\]
\[\sin\frac{5\pi}{14} = \cos\left( \frac{\pi}{2} - \frac{5\pi}{14} \right) =\]
\[= \cos\left( \frac{7\pi}{14} - \frac{5\pi}{14} \right) =\]
\[= \cos\frac{2\pi}{14} = \cos\frac{\pi}{7};\]
\[\frac{\pi}{6}\ и\ \frac{\pi}{7}\ принадлежат\ \lbrack 0;\ \pi\rbrack -\]
\[функция\ убывает;\]
\[\frac{\pi}{6} > \frac{\pi}{7}\]
\[\cos\frac{\pi}{6} < \cos\frac{\pi}{7}\]
\[\cos\frac{\pi}{6} < \sin\frac{5\pi}{14}.\]
\[6)\cos\frac{\pi}{8}\ и\ \sin\frac{3\pi}{10};\]
\[\sin\frac{3\pi}{10} = \cos\left( \frac{\pi}{2} - \frac{3\pi}{10} \right) =\]
\[= \cos\left( \frac{5\pi}{10} - \frac{3\pi}{10} \right) =\]
\[= \cos\frac{2\pi}{10} = \cos\frac{\pi}{5};\]
\[\frac{\pi}{8}\ и\ \frac{\pi}{5}\ принадлежат\ \lbrack 0;\ \pi\rbrack -\]
\[функция\ убывает;\]
\[\frac{\pi}{8} < \frac{\pi}{5}\]
\[\cos\frac{\pi}{8} > \cos\frac{\pi}{5}\]
\[\cos\frac{\pi}{8} > \sin\frac{3\pi}{10}.\]