\[\boxed{\mathbf{671}\mathbf{.}}\]
\[1)\sin\left( x + \frac{\pi}{6} \right) + \cos\left( x + \frac{\pi}{3} \right) =\]
\[= 1 + \cos{2x}\]
\[\cos x = 2\cos^{2}x\]
\[y = \cos x:\]
\[y = 2y^{2}\]
\[2y^{2} - y = 0\]
\[y(2y - 1) = 0\]
\[y_{1} = 0\ \ и\ \ y_{2} = \frac{1}{2}.\]
\[1)\ \cos x = 0\]
\[x = \arccos 0 + \pi n\]
\[x = \frac{\pi}{2} + \pi n.\]
\[2)\ \cos x = \frac{1}{2}\]
\[x = \pm \arccos\frac{1}{2} + 2\pi n\]
\[x = \pm \frac{\pi}{3} + 2\pi n.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n;\ \ \pm \frac{\pi}{3} + 2\pi n.\]
\[2)\sin\left( x - \frac{\pi}{4} \right) + \cos\left( x - \frac{\pi}{4} \right) = \sin{2x}\]
\[\sqrt{2}\sin x = 2\sin x \bullet \cos x\]
\[\sqrt{2}\sin x - 2\sin x \bullet \cos x = 0\]
\[\sin x \bullet \left( \sqrt{2} - 2\cos x \right) = 0\]
\[1)\ \sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[2)\ \sqrt{2} - 2\cos x = 0\]
\[2\cos x = \sqrt{2}\]
\[\cos x = \frac{\sqrt{2}}{2}\]
\[x = \pm \arccos\frac{\sqrt{2}}{2} + 2\pi n\]
\[x = \pm \frac{\pi}{4} + 2\pi n.\]
\[Ответ:\ \ \pi n;\ \ \pm \frac{\pi}{4} + 2\pi n.\]