\[\boxed{\mathbf{634}\mathbf{.}}\]
\[2 + 6\ tg\ 2x + 4\ tg^{2}\ 2x = 0\]
\[y = tg\ 2x:\]
\[4y^{2} + 6y + 2 = 0\]
\[2y^{2} + 3y + 1 = 0\]
\[D = 9 - 8 = 1\]
\[y_{1} = \frac{- 3 - 1}{2 \bullet 2} = - 1;\]
\[y_{2} = \frac{- 3 + 1}{2 \bullet 2} = - \frac{1}{2}.\]
\[tg\ 2x = - 1\]
\[2x = - arctg\ 1 + \pi n\]
\[2x = - \frac{\pi}{4} + \pi n\]
\[x = \frac{1}{2} \bullet \left( - \frac{\pi}{4} + \pi n \right)\]
\[x = - \frac{\pi}{8} + \frac{\text{πn}}{2}.\]
\[tg\ 2x = - \frac{1}{2}\]
\[2x = - arctg\frac{1}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( - arctg\frac{1}{2} + \pi n \right)\]
\[x = - \frac{1}{2}\text{arctg}\frac{1}{2} + \frac{\text{πn}}{2}.\]
\[Ответ:\ - \frac{\pi}{8} + \frac{\text{πn}}{2};\ \ \]
\[- \frac{1}{2}\text{arctg}\frac{1}{2} + \frac{\text{πn}}{2}.\]
\[2)\ 1 - \sin x \bullet \cos x + 2\cos^{2}x = 0\]
\[tg^{2}\ x - tg\ x + 3 = 0\]
\[y = tg\ x:\]
\[y^{2} - y + 3 = 0\]
\[D = 1 - 12 = - 11 < 0\]
\[корней\ нет.\]
\[Ответ:\ \ корней\ нет.\]
\[3)\ 2\sin^{2}x + \frac{1}{4}\cos^{3}{2x} = 1\]
\[2\sin^{2}x - \left( \cos^{2}x + \sin^{2}x \right) + \frac{1}{4}\cos^{3}{2x} = 0\]
\[- \left( \cos^{2}x - \sin^{2}x \right) + \frac{1}{4}\cos^{3}{2x} = 0\]
\[- \cos{2x} + \frac{1}{4}\cos^{3}{2x} = 0\]
\[y = \cos{2x}:\]
\[\frac{1}{4}y^{3} - y = 0\]
\[y\left( \frac{1}{4}y^{2} - 1 \right) = 0\]
\[1)\ \cos{2x} = 0\]
\[2x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[2)\ \frac{1}{4}\cos^{2}{2x} - 1 = 0\]
\[\frac{1}{4}\cos^{2}{2x} = 1\]
\[\cos^{2}{2x} = 4\]
\[\cos{2x} = \pm 2\]
\[корней\ нет.\]
\[Ответ:\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[4)\sin^{2}{2x} + \cos^{2}{3x} = 1 + 4\sin x\]
\[\sin^{2}{2x} - \left( 1 - \cos^{2}{3x} \right) = 4\sin x\]
\[\sin^{2}{2x} - \sin^{2}{3x} = 4\sin x\]
\[- 2 \bullet \sin{5x} \bullet \cos\frac{x}{2} \bullet \sin\frac{x}{2} = 4\sin x\]
\[- \sin x \bullet \sin{5x} - 4\sin x = 0\]
\[- \sin x\left( \sin{5x} + 4 \right) = 0\]
\[1)\ \sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[2)\ \sin{5x} + 4 = 0\]
\[\sin{5x} = - 4\]
\[корней\ нет.\]
\[Ответ:\ \ \pi n.\]