\[\boxed{\mathbf{633}\mathbf{.}}\]
\[1)\ 4\sin x \bullet \cos x \bullet \cos{2x} = \sin^{2}{4x}\]
\[2\sin{2x} \bullet \cos{2x} = \sin^{2}{4x}\]
\[\sin{4x} = \sin^{2}{4x}\]
\[\sin{4x} = 0\]
\[4x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{4} \bullet \pi n = \frac{\text{πn}}{4}.\]
\[\sin{4x} = 1\]
\[4x = \arcsin 1 + 2\pi n\]
\[4x = \frac{\pi}{2} + 2\pi n\]
\[x = \frac{1}{4} \bullet \left( \frac{\pi}{2} + 2\pi n \right) = \frac{\pi}{8} + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ \frac{\text{πn}}{4};\ \ \frac{\pi}{8} + \frac{\text{πn}}{2}.\]
\[2)\ 1 + \cos^{2}x = \sin^{4}x\]
\[1 - \sin^{4}x + \cos^{2}x = 0\]
\[\left( 1 - \sin^{2}x \right)\left( 1 + \sin^{2}x \right) + \cos^{2}x = 0\]
\[\cos^{2}x \bullet \left( 1 + \sin^{2}x \right) + \cos^{2}x = 0\]
\[\cos^{2}x \bullet \left( 1 + \sin^{2}x + 1 \right) = 0\]
\[\cos^{2}x \bullet \left( \sin^{2}x + 2 \right) = 0\]
\[\cos^{2}x = 0\]
\[\cos x = 0\]
\[x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n.\]
\[\sin^{2}x + 2 = 0\]
\[\sin^{2}x = - 2\]
\[корней\ нет.\]
\[Ответ:\ \ \frac{\pi}{2} + \pi n.\]