\[\boxed{\mathbf{635}\mathbf{.}}\]
\[1)\cos x \bullet \cos{2x} = \sin x \bullet \sin{2x}\]
\[\cos x \bullet \cos{2x} - \sin x \bullet \sin{2x} = 0\]
\[\cos(x + 2x) = 0\]
\[\cos{3x} = 0\]
\[3x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{3} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[Ответ:\ \ \frac{\pi}{6} + \frac{\text{πn}}{3}.\]
\[2)\sin{2x} \bullet \cos x = \cos{2x} \bullet \sin x\]
\[\sin{2x} \bullet \cos x - \cos{2x} \bullet \sin x = 0\]
\[\sin(2x - x) = 0\]
\[\sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Ответ:\ \ \pi n.\]
\[3)\sin{3x} = \sin{2x} \bullet \cos x\]
\[\sin(x + 2x) - \sin{2x} \bullet \cos x = 0\]
\[\sin x \bullet \cos{2x} + \sin{2x} \bullet \cos x - \sin{2x} \bullet \cos x = 0\]
\[\sin x \bullet \cos{2x} = 0\]
\[1)\ \sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[2)\ \cos{2x} = 0\]
\[2x = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = \frac{1}{2} \bullet \left( \frac{\pi}{2} + \pi n \right) = \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[Ответ:\ \ \pi n;\ \ \frac{\pi}{4} + \frac{\text{πn}}{2}.\]
\[4)\cos{5x} \bullet \cos x = \cos{4x}\]
\[\cos(5x - x) - \cos{5x} \bullet \cos x = 0\]
\[\cos{5x} \bullet \cos x + \sin{5x} \bullet \sin x - \cos{5x} \bullet \cos x = 0\]
\[\sin{5x} \bullet \sin x = 0\]
\[1)\ \sin{5x} = 0\]
\[5x = \arcsin 0 + \pi n = \pi n\]
\[x = \frac{1}{5} \bullet \pi n = \frac{\text{πn}}{5}.\]
\[2)\ \sin x = 0\]
\[x = \arcsin 0 + \pi n = \pi n.\]
\[Ответ:\ \ \frac{\text{πn}}{5}.\]