\[\boxed{\mathbf{632}\mathbf{.}}\]
\[1)\ 1 - \cos(\pi - x) + \sin\left( \frac{\pi}{2} + \frac{x}{2} \right) = 0\]
\[1 + \cos x + \cos\frac{x}{2} = 0\]
\[2\cos^{2}\frac{x}{2} + \cos\frac{x}{2} = 0\]
\[\cos\frac{x}{2} \bullet \left( 2\cos\frac{x}{2} + 1 \right) = 0\]
\[\cos\frac{x}{2} = 0\]
\[\frac{x}{2} = \arccos 0 + \pi n = \frac{\pi}{2} + \pi n\]
\[x = 2 \bullet \left( \frac{\pi}{2} + \pi n \right) = \pi + 2\pi n.\]
\[2\cos\frac{x}{2} + 1 = 0\]
\[2\cos\frac{x}{2} = - 1\]
\[\cos\frac{x}{2} = - \frac{1}{2}\]
\[\frac{x}{2} = \pm \left( \pi - \arccos\frac{1}{2} \right) + 2\pi n\]
\[\frac{x}{2} = \pm \left( \pi - \frac{\pi}{3} \right) + 2\pi n\]
\[\frac{x}{2} = \pm \frac{2\pi}{3} + 2\pi n\]
\[x = 2 \bullet \left( \pm \frac{2\pi}{3} + 2\pi n \right)\]
\[x = \pm \frac{4\pi}{3} + 4\pi n.\]
\[Ответ:\ \ \pi + 2\pi n;\ \ \pm \frac{4\pi}{3} + 4\pi n.\]
\[2)\ \sqrt{2}\cos\left( x - \frac{\pi}{4} \right) = \left( \sin x + \cos x \right)^{2}\]
\[\sqrt{2} \bullet \left( \cos x \bullet \cos\frac{\pi}{4} + \sin x \bullet \sin\frac{\pi}{4} \right) =\]
\[= \left( \sin x + \cos x \right)^{2}\]
\[\sqrt{2} \bullet \left( \frac{1}{\sqrt{2}} \bullet \cos x + \frac{1}{\sqrt{2}} \bullet \sin x \right) =\]
\[= \left( \sin x + \cos x \right)^{2}\]
\[\cos x + \sin x = \left( \sin x + \cos x \right)^{2}\]
\[\sin x + \cos x = 0\ \ \ \ \ |\ :\cos x\]
\[tg\ x + 1 = 0\]
\[tg\ x = - 1\]
\[x = - arctg\ 1 + \pi n\]
\[x = - \frac{\pi}{4} + \pi n.\]
\[\sin x + \cos x = 1\ \ \ \ \ |\ :\sqrt{2}\]
\[\frac{\sqrt{2}}{2} \bullet \sin x + \frac{\sqrt{2}}{2} \bullet \cos x = \frac{\sqrt{2}}{2}\]
\[\sin\frac{\pi}{4} \bullet \sin x + \cos\frac{\pi}{4} \bullet \cos x = \frac{\sqrt{2}}{2}\]
\[\cos\left( x - \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2}\]
\[x - \frac{\pi}{4} = \pm \arccos\frac{\sqrt{2}}{2} + 2\pi n\]
\[x - \frac{\pi}{4} = \pm \frac{\pi}{4} + 2\pi n\]
\[x_{1} = - \frac{\pi}{4} + \frac{\pi}{4} + 2\pi n = 2\pi n;\]
\[x_{2} = + \frac{\pi}{4} + \frac{\pi}{4} + 2\pi n = \frac{\pi}{2} + 2\pi n.\]
\[Ответ:\ - \frac{\pi}{4} + \pi n;\ \ 2\pi n;\ \]
\[\text{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ }\ \frac{\pi}{2} + 2\pi n.\]