\[\boxed{\mathbf{541}\mathbf{.}}\]
\[1)\ \frac{2\left( \cos a + \cos{3a} \right)}{2\sin{2a} + \sin{4a}} =\]
\[= \frac{2 \bullet \cos{2a} \bullet \cos a}{\cos a \bullet \left( \sin a + \sin{3a} \right)} =\]
\[= \frac{2 \bullet \cos{2a}}{\sin a + \sin{3a}} =\]
\[= \frac{2 \bullet \cos{2a}}{2 \bullet \sin\frac{2 + 3a}{2} \bullet \cos\frac{a - 3a}{2}} =\]
\[= \frac{\cos{2a}}{\sin\frac{4a}{2} \bullet \cos\left( - \frac{2a}{2} \right)} =\]
\[= \frac{\cos{2a}}{\sin{2a}} \bullet \frac{1}{\cos a} = \frac{ctg\ 2a}{\cos a}\]
\[2)\ \frac{1 + \sin a - \cos{2a} - \sin{3a}}{2\sin^{2}a + \sin a - 1} =\]
\[= \frac{2\sin a\left( \sin a - \cos{2a} \right)}{\sin a - \cos{2a}} =\]
\[= 2\sin a\]