\[\boxed{\mathbf{477.}}\]
\[1)\ \frac{2 - \sin^{2}\left( - \frac{\pi}{6} \right) + \cos^{2}\left( - \frac{\pi}{3} \right)}{2\cos\left( - \frac{\pi}{3} \right) + \sin\left( - \frac{\pi}{6} \right)} =\]
\[= \frac{2 - \left( - \sin\frac{\pi}{6} \right)^{2} + \cos^{2}\frac{\pi}{3}}{2\cos\frac{\pi}{3} - \sin\frac{\pi}{6}} =\]
\[= \frac{2 - \left( - \frac{1}{2} \right)^{2} + \left( \frac{1}{2} \right)^{2}}{2 \bullet \frac{1}{2} - \frac{1}{2}} =\]
\[= \frac{2 - \left( \frac{1}{2} \right)^{2} + \left( \frac{1}{2} \right)^{2}}{1 - \frac{1}{2}} = 2\ :\frac{1}{2} =\]
\[= 2 \bullet 2 = 4\]
\[= - \sqrt{3} \bullet \frac{\sqrt{3}}{2} + 2 \bullet 1 + 4 \bullet 0 =\]
\[= - \frac{3}{2} + 2 = - 1,5 + 2 = 0,5\]