\[\boxed{\mathbf{469.}}\]
\[1)\ \left( 1 + tg^{2}\text{\ a} \right)\cos^{2}a - 1 =\]
\[= \left( 1 + \frac{\sin^{2}a}{\cos^{2}a} \right)\cos^{2}a - 1 =\]
\[= \cos^{2}a + \sin^{2}a - 1 =\]
\[= 1 - 1 = 0\]
\[2)\ 1 - \sin^{2}a\left( 1 + ctg^{2}\text{\ a} \right) =\]
\[= 1 - \sin^{2}a\left( 1 + \frac{\cos^{2}a}{\sin^{2}a} \right) =\]
\[= 1 - \sin^{2}a - \cos^{2}a =\]
\[= 1 - \left( \sin^{2}a + \cos^{2}a \right) =\]
\[= 1 - 1 = 0\]
\[3)\ 1 + tg^{2}\ a + \frac{1}{\sin^{2}a} =\]
\[= 1 + \frac{\sin^{2}a}{\cos^{2}a} + \frac{1}{\sin^{2}a} =\]
\[= \frac{\cos^{2}a + \sin^{2}a}{\cos^{2}a} + \frac{1}{\sin^{2}a} =\]
\[= \frac{1}{\cos^{2}a} + \frac{1}{\sin^{2}a} =\]
\[= \frac{\sin^{2}a + \cos^{2}a}{\cos^{2}a \bullet \sin^{2}a} =\]
\[= \frac{1}{\sin^{2}a \bullet \cos^{2}a}\]
\[4)\ \frac{1 + tg^{2}\text{\ a}}{1 + ctg^{2}\text{\ a}} =\]
\[= \left( 1 + tg^{2}\text{\ a} \right)\ :\left( 1 + \frac{1}{tg^{2}\text{\ a}} \right) =\]
\[= \left( 1 + tg^{2}\text{\ a} \right)\ :\frac{tg^{2}\ a + 1}{tg^{2}\text{\ a}} =\]
\[= \left( 1 + tg^{2}\text{\ a} \right) \bullet \frac{tg^{2}\text{\ a}}{1 + tg^{2}\text{\ a}} =\]
\[= tg^{2}\text{\ a}\]