\[\boxed{\mathbf{470.}}\]
\[1)\ \left( 1 - \cos{2a} \right)\left( 1 + \cos{2a} \right) =\]
\[= \sin^{2}{2a}\]
\[1 + \cos{2a} - \cos{2a} - \cos^{2}{2a} =\]
\[= \sin^{2}{2a}\]
\[1 - \cos^{2}{2a} = \sin^{2}{2a}\]
\[\sin^{2}{2a} = \sin^{2}{2a}\]
\[Что\ и\ требовалось\ доказать.\]
\[2)\ \frac{\sin a - 1}{\cos^{2}a} = - \frac{1}{1 + \sin a}\]
\[\frac{\sin a - 1}{1 - \sin^{2}a} = - \frac{1}{1 + \sin a}\]
\[- \frac{1 - \sin a}{\left( 1 - \sin a \right)\left( 1 + \sin a \right)} =\]
\[= - \frac{1}{1 + \sin a}\]
\[- \frac{1}{1 + \sin a} = - \frac{1}{1 + \sin a}\]
\[Что\ и\ требовалось\ доказать.\]
\[3)\cos^{4}a - \sin^{4}a =\]
\[= \cos^{2}a - \sin^{2}a\]
\[\cos^{4}a - \sin^{4}a = \cos^{2}a - \sin^{2}a\]
\[\left( \cos^{2}a - \sin^{2}a \right)\left( \cos^{2}a + \sin^{2}a \right) =\]
\[= \cos^{2}a - \sin^{2}a\]
\[\cos^{2}a - \sin^{2}a = \cos^{2}a - \sin^{2}a\]
\[Что\ и\ требовалось\ доказать.\]
\[\sin^{4}a + \cos^{4}a = \sin^{4}a + \cos^{4}a\]
\[Что\ и\ требовалось\ доказать.\]
\[5)\ \frac{\sin a}{1 + \cos a} + \frac{1 + \cos a}{\sin a} = \frac{2}{\sin a}\]
\[\frac{\sin^{2}a + \left( 1 + \cos a \right)^{2}}{\left( 1 + \cos a \right) \bullet \sin a} = \frac{2}{\sin a}\]
\[\frac{\sin^{2}a + 1 + 2\cos a + \cos^{2}a}{\left( 1 + \cos a \right) \bullet \sin a} =\]
\[= \frac{2}{\sin a}\]
\[\frac{1 + 1 + 2\cos a}{\left( 1 + \cos a \right) \bullet \sin a} = \frac{2}{\sin a}\]
\[\frac{2\left( 1 + \cos a \right)}{\left( 1 + \cos a \right) \bullet \sin a} = \frac{2}{\sin a}\]
\[\frac{2}{\sin a} = \frac{2}{\sin a}\]
\[Что\ и\ требовалось\ доказать.\]
\[6)\ \frac{\sin a}{1 - \cos a} = \frac{1 + \cos a}{\sin a}\]
\[\frac{\sin^{2}a}{\left( 1 - \cos a \right) \bullet \sin a} = \frac{1 + \cos a}{\sin a}\]
\[\frac{1 - \cos^{2}a}{\left( 1 - \cos a \right) \bullet \sin a} = \frac{1 + \cos a}{\sin a}\]
\[\frac{\left( 1 - \cos a \right)\left( 1 + \cos a \right)}{\left( 1 - \cos a \right) \bullet \sin a} =\]
\[= \frac{1 + \cos a}{\sin a}\]
\[\frac{1 + \cos a}{\sin a} = \frac{1 + \cos a}{\sin a}\]
\[Что\ и\ требовалось\ доказать.\]
\[7)\ \frac{1}{1 + tg^{2}\text{\ a}} + \frac{1}{1 + ctg^{2}\text{\ a}} = 1\]
\[\cos^{2}a + \sin^{2}a = 1\]
\[1 = 1\]
\[Что\ и\ требовалось\ доказать.\]
\[8)\ tg^{2}\ a - \sin^{2}a = tg^{2}\ a \bullet \sin^{2}a\]
\[\frac{\sin^{2}a}{\cos^{2}a} - \sin^{2}a = tg^{2}\ a \bullet \sin^{2}a\]
\[\sin^{2}a \bullet \left( \frac{1}{\cos^{2}a} - 1 \right) =\]
\[= tg^{2}\ a \bullet \sin^{2}a\]
\[\sin^{2}a \bullet \frac{1 - \cos^{2}a}{\cos^{2}a} =\]
\[= tg^{2}\ a \bullet \sin^{2}a\]
\[\sin^{2}a \bullet \frac{\sin^{2}a}{\cos^{2}a} = tg^{2}\ a \bullet \sin^{2}a\]
\[\sin^{2}a \bullet tg^{2}\ a = tg^{2}\ a \bullet \sin^{2}a\]
\[Что\ и\ требовалось\ доказать.\]