\[\boxed{\mathbf{468.}}\]
\[1)\ \left( 1 - \sin^{2}a \right)\left( 1 + tg^{2}\text{\ a} \right) = 1\]
\[\cos^{2}a \bullet \left( 1 + \frac{\sin^{2}a}{\cos^{2}a} \right) = 1\]
\[\cos^{2}a \bullet \frac{\cos^{2}a + \sin^{2}a}{\cos^{2}a} = 1\]
\[\cos^{2}a \bullet \frac{1}{\cos^{2}a} = 1\]
\[1 = 1\]
\[Что\ и\ требовалось\ доказать.\]
\[= \sin^{2}a\]
\[\sin^{2}a \bullet \left( 1 + \frac{\cos^{2}a}{\sin^{2}a} \right) - \cos^{2}a =\]
\[= \sin^{2}a\]
\[\sin^{2}a + \cos^{2}a - \cos^{2}a = \sin^{2}a\]
\[\sin^{2}a = \sin^{2}a\]
\[Что\ и\ требовалось\ доказать.\]