\[\boxed{\mathbf{386}\mathbf{.}}\]
\[\log_{30}64 = \frac{\lg 64}{\lg 30} = \frac{\lg 2^{6}}{\lg(3 \bullet 10)} =\]
\[= \frac{6\lg 2}{\lg 3 + \lg 10} = \frac{6\lg\frac{10}{5}}{\lg 3 + 1} =\]
\[= \frac{6\left( \lg 10 - \lg 5 \right)}{\lg 3 + 1} = \frac{6\left( 1 - \lg 5 \right)}{\lg 3 + 1}\]
\[\lg 3 \approx 0,4771\ \ и\ \lg 5 \approx 0,6990:\]
\[\log_{30}64 \approx \frac{6(1 - 0,6990)}{0,4771 + 1} \approx\]
\[\approx \frac{6 \bullet 0,301}{1,4771} \approx \frac{1,806}{1,4771} \approx 1,223\]
\[Ответ:\ \ \approx 1,223.\]