\[\boxed{\mathbf{385}\mathbf{.}}\]
\[1)\log_{\frac{1}{2}}\frac{1}{3}\text{\ \ }и\ \ \log_{\frac{1}{3}}\frac{1}{2}\]
\[\log_{\frac{1}{2}}\frac{1}{3} = \log_{2^{- 1}}\frac{1}{3} = - \log_{2}\frac{1}{3} =\]
\[= \log_{2}\left( \frac{1}{3} \right)^{- 1} = \log_{2}3\]
\[\log_{\frac{1}{3}}\frac{1}{2} = \log_{3^{- 1}}\frac{1}{2} = - \log_{3}\frac{1}{2} =\]
\[= \log_{3}\left( \frac{1}{2} \right)^{- 1} = \log_{3}2\]
\[2 < 3:\ \]
\[\log_{2}3 > 1\ \ и\ \log_{3}2 < 1\]
\[\log_{2}3 > \log_{3}2\]
\[\log_{\frac{1}{2}}\frac{1}{3} > \log_{\frac{1}{3}}\frac{1}{2}.\]
\[2)\ 2^{2\log_{2}5 + \log_{\frac{1}{9}}9}\text{\ \ }и\ \ \sqrt{8}\]
\[2^{2\log_{2}5 + \log_{\frac{1}{9}}9} = 2^{2\log_{2}5} \bullet 2^{\log_{\frac{1}{9}}9} =\]
\[= \left( 2^{\log_{2}5} \right)^{2} \bullet 2^{\log_{\frac{1}{9}}\left( \frac{1}{9} \right)^{- 1}} =\]
\[= 5^{2} \bullet 2^{- 1} = \frac{25}{2}\]
\[8 < 9\ \]
\[\sqrt{8} < 3\ \ \ \ \]
\[\sqrt{8} < \frac{25}{2}\]
\[2^{2\log_{2}5 + \log_{\frac{1}{9}}9} > \ \sqrt{8}.\]