\[\boxed{\mathbf{387}\mathbf{.}}\]
\[\log_{36}15 = \frac{\lg 15}{\lg 36} = \frac{\lg 15}{\lg 6^{2}} =\]
\[= \frac{\lg 15}{2\lg 6} = \frac{\lg 15}{2\lg(2 \bullet 3)} =\]
\[= \frac{\lg 15}{2\left( \lg 2 + \lg 3 \right)} =\]
\[= \frac{\lg 15}{2\left( \lg\frac{10}{5} + \lg 3 \right)} =\]
\[= \frac{\lg(3 \bullet 5)}{2\left( \lg 10 - \lg 5 + \lg 3 \right)} =\]
\[= \frac{\lg 3 + \lg 5}{2\left( 1 - \lg 5 + \lg 3 \right)}\]
\[\lg 3 \approx 0,4771\ \ и\ \lg 5 \approx 0,6990:\]
\[\log_{30}64 \approx\]
\[\approx \frac{0,4771 + 0,6990}{2(1 - 0,6990 + 0,4771)} \approx\]
\[= \frac{1,1761}{2 \bullet 0,7781} \approx \frac{1,1761}{1,5562} \approx 0,756\]
\[Ответ:\ \ \approx 0,756.\]