\[\boxed{\mathbf{335}\mathbf{.}}\]
\[1)\ y = \log_{2}|3 - x| - \log_{2}\left| x^{3} - 8 \right|\]
\[|3 - x| > 0\]
\[3 - x \neq 0\ \]
\[x \neq 3.\]
\[\left| x^{3} - 8 \right| > 0\]
\[x^{3} - 8 \neq 0\]
\[x^{3} \neq 8\ \]
\[x \neq 2.\]
\[2)\ y =\]
\[= \log_{0,3}\sqrt{x + 1} + \log_{0,4}\left( 1 - 8x^{3} \right)\]
\[\sqrt{x + 1} > 0\]
\[x + 1 > 0\]
\[x > - 1.\]
\[1 - 8x^{3} > 0\]
\[8x^{3} < 1\]
\[x^{3} < \frac{1}{8}\]
\[x < \frac{1}{2}\]
\[Ответ:\ \ D(x) = ( - 1;\ 0,5).\]