\[\boxed{\mathbf{331}\mathbf{.}}\]
\[1)\ y = \log_{8}\left( x^{2} - 3x - 4 \right)\]
\[x^{2} - 3x - 4 > 0\]
\[D = 3^{2} + 4 \bullet 4 = 9 + 16 = 25\]
\[x_{1} = \frac{3 - 5}{2} = - 1;\text{\ \ }\]
\[x_{2} = \frac{3 + 5}{2} = 4.\]
\[(x + 1)(x - 4) > 0\]
\[x < - 1\ \ и\ \ x > 4\]
\[Ответ:\ \ x < - 1;\ \ x > 4.\]
\[2)\ y = \log_{\sqrt{3}}\left( - x^{2} + 5x + 6 \right)\]
\[- x^{2} + 5x + 6 > 0\]
\[x^{2} - 5x - 6 < 0\]
\[D = 5^{2} + 4 \bullet 6 = 25 + 24 = 49\]
\[x_{1} = \frac{5 - 7}{2} = - 1;\text{\ \ }\]
\[x_{2} = \frac{5 + 7}{2} = 6.\]
\[(x + 1)(x - 6) < 0\]
\[- 1 < x < 6\]
\[Ответ:\ \ - 1 < x < 6.\]
\[3)\ y = \log_{0,7}\frac{x^{2} - 9}{x + 5}\]
\[\frac{x^{2} - 9}{x + 5} > 0\]
\[\left( x^{2} - 9 \right)(x + 5) > 0\]
\[(x + 5)(x + 3)(x - 3) > 0\]
\[- 5 < x < - 3\ \ и\ \ x > 3\]
\[Ответ:\ \ - 5 < x < - 3;\ \ x > 3.\]
\[4)\ y = \log_{\frac{1}{3}}\frac{x - 4}{x^{2} + 4}\]
\[\frac{x - 4}{x^{2} + 4} > 0\]
\[x - 4 > 0\ \]
\[x > 4.\]
\[Ответ:\ \ x > 4.\]
\(5)\ y = \log_{\pi}\left( 2^{x} - 2 \right)\)
\[2^{x} - 2 > 0\]
\[2^{x} > 2\]
\[2^{x} > 2^{1}\ \]
\[x > 1\]
\[Ответ:\ \ x > 1.\]
\[6)\ y = \log_{3}\left( 3^{x - 1} - 9 \right)\]
\[3^{x - 1} - 9 > 0\]
\[3^{x - 1} > 9\]
\[3^{x - 1} > 3^{2}\]
\[x - 1 > 2\ \]
\[x > 3\]
\[Ответ:\ \ x > 3.\]