Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 330

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 330

\[\boxed{\mathbf{330}\mathbf{.}}\]

\[1)\ \frac{1}{2} + \lg 3\text{\ \ }и\ \ \lg 19 - \lg 2\]

\[1)\ \frac{1}{2} + \lg 3 = \lg 10^{\frac{1}{2}} + \lg 3 =\]

\[= \lg\left( 10^{\frac{1}{2}} \bullet 3 \right) = \lg{3\sqrt{10}} =\]

\[= \lg\sqrt{90}\]

\[8836 < 9000 < 9025\]

\[94 < \sqrt{9000} < 95\]

\[9,4 < \sqrt{90} < 9,5.\]

\[2)\ \lg 19 - \lg 2 = \lg\frac{19}{2} = \lg{9,5}.\]

\[Сравним:\]

\[\sqrt{90} < 9,5\]

\[\lg\sqrt{90} < \lg{9,5}\]

\[Ответ:\ \ \frac{1}{2} + \lg 3 < \lg 19 - \lg 2.\]

\[2)\ \frac{\lg 5 + \lg\sqrt{7}}{2}\text{\ \ }и\ \ \lg\frac{5 + \sqrt{7}}{2}\]

\[1)\ \frac{\lg 5 + \lg\sqrt{7}}{2} = \frac{1}{2} \bullet \lg{5\sqrt{7}} =\]

\[= \lg\sqrt{5\sqrt{7}}.\]

\[Допустим:\]

\[\frac{\lg 5 + \lg\sqrt{7}}{2} > \lg\frac{5 + \sqrt{7}}{2}\]

\[\sqrt{5\sqrt{7}} > \frac{5 + \sqrt{7}}{2}\]

\[5\sqrt{7} > \frac{25 + 10\sqrt{7} + 7}{4}\]

\[20\sqrt{7} > 32 + 10\sqrt{7}\]

\[400 \bullet 7 > 1024 + 640\sqrt{7} + 700\]

\[2800 > 1724 + 640\sqrt{7}\]

\[1076 > 640\sqrt{7}\]

\[269 > 160\sqrt{7}\]

\[72\ 361 > 25600 \bullet 7\]

\[72\ 361 > 179\ 200 - неверно\]

\[Ответ:\ \ \frac{\lg 5 + \lg\sqrt{7}}{2} < \lg\frac{5 + \sqrt{7}}{2}.\]

\[3)\ 3\left( \lg 7 - \lg 5 \right)\text{\ \ }и\ \ \lg 9 - \frac{2}{3}\lg 8\]

\[1)\ 3\left( \lg 7 - \lg 5 \right) = 3\lg\frac{7}{5} =\]

\[= \lg\left( \frac{7}{5} \right)^{3} = \lg\frac{343}{125} = \lg\frac{1372}{500}\]

\[2)\ \lg 9 - \frac{2}{3}\lg 8 = \lg 9 - \lg 8^{\frac{2}{3}} =\]

\[= \lg\frac{9}{8^{\frac{2}{3}}} = \lg\frac{9}{2^{2}} = \lg\frac{9}{4} = \lg\frac{1125}{500}\]

\[Сравним:\]

\[\frac{1372}{500} > \frac{1125}{500}\]

\[\lg\frac{1372}{500} > \lg\frac{1125}{500}\]

\[Ответ:\ \ \]

\[3\left( \lg 7 - \lg 5 \right) > \lg 9 - \frac{2}{3}\lg 8.\]

\[4)\lg{\lg{\lg 50}}\text{\ \ }и\ \ \lg^{3}50\]

\[1)\ 10 < 50 < 100\]

\[10^{1} < 50 < 10^{2}\]

\[1 < \lg 50 < 2\]

\[0 < \lg{\lg 50} < 1\]

\[\lg{\lg{\lg 50}} < 0\]

\[2)\ 1 < \lg 50 < 2\]

\[1 < \lg^{3}50 < 8\]

\[Ответ:\ \ \lg{\lg{\lg 50}} < \lg^{3}50.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам