\[\boxed{\mathbf{328}\mathbf{.}}\]
\[1)\ y = \log_{4}(x - 1)\]
\[x - 1 > 0\ \]
\[x > 1\]
\[Ответ:\ \ x > 1.\]
\[2)\ y = \log_{0,3}(1 + x)\]
\[1 + x > 0\ \]
\[x > - 1\]
\[Ответ:\ \ x > - 1.\]
\[3)\ y = \log_{3}\left( x^{2} + 2x \right)\]
\[x^{2} + 2x > 0\]
\[(x + 2)x > 0\]
\[x < - 2\ \ и\ \ x > 0\]
\[Ответ:\ \ x < - 2;\ \ x > 0.\]
\[4)\ y = \log_{\sqrt{2}}\left( 4 - x^{2} \right)\]
\[4 - x^{2} > 0\]
\[x^{2} - 4 < 0\]
\[(x + 2)(x - 2) < 0\]
\[- 2 < x < 0\]
\[Ответ:\ \ - 2 < x < 0.\]