\[\boxed{\mathbf{327}\mathbf{.}}\]
\[1)\log_{3}(5x - 1) = 2\]
\[\log_{3}(5x - 1) = \log_{3}3^{2}\]
\[5x - 1 = 3^{2}\]
\[5x - 1 = 9\]
\[5x = 10\ \]
\[x = 2\]
\[Ответ:\ \ x = 2.\]
\[2)\log_{5}(3x + 1) = 2\]
\[\log_{5}(3x + 1) = \log_{5}5^{2}\]
\[3x + 1 = 5^{2}\]
\[3x + 1 = 25\]
\[3x = 24\ \]
\[x = 8\]
\[Ответ:\ \ x = 8.\]
\[3)\log_{4}(2x - 3) = 1\]
\[\log_{4}(2x - 3) = \log_{4}4\]
\[2x - 3 = 4\]
\[2x = 7\ \]
\[x = 3,5\]
\[Ответ:\ \ x = 3,5.\]
\[4)\log_{7}(x + 3) = 2\]
\[\log_{7}(x + 3) = \log_{7}7^{2}\]
\[x + 3 = 7^{2}\]
\[x + 3 = 49\ \]
\[x = 46\]
\[Ответ:\ \ x = 46.\]
\[5)\lg(3x - 1) = 0\]
\[\lg(3x - 1) = \lg 1\]
\[3x - 1 = 1\]
\[3x = 2\]
\[x = \frac{2}{3}\]
\[Ответ:\ \ x = \frac{2}{3}.\]
\[6)\lg(2 - 5x) = 1\]
\[\lg(2 - 5x) = \lg 10\]
\[2 - 5x = 10\]
\[- 5x = 8\]
\[x = - 1,6\]
\[Ответ:\ \ x = - 1,6.\]