\[\boxed{\mathbf{235}\mathbf{.}}\]
\[y = \left( \frac{1}{4} \right)^{x}\text{\ \ }и\ \ y = \left( \frac{1}{2} \right)^{x} + 12\ \]
\[\left( \frac{1}{4} \right)^{x} > \left( \frac{1}{2} \right)^{x} + 12\ \]
\[\left( \frac{1}{2} \right)^{2x} - \left( \frac{1}{2} \right)^{x} - 12 > 0\ \]
\[Пусть\ y = \left( \frac{1}{2} \right)^{x}:\]
\[y^{2} - y - 12 > 0\]
\[D = 1^{2} + 4 \bullet 12 = 1 + 48 = 49\]
\[y_{1} = \frac{1 - 7}{2} = - 3;\ \text{\ \ }\]
\[y_{2} = \frac{1 + 7}{2} = 4.\]
\[(y + 3)(y - 4) > 0\]
\[y < - 3\ \text{\ \ }y > 4.\]
\[1)\ \left( \frac{1}{2} \right)^{x} < - 3\]
\[нет\ корней.\]
\[2)\ \left( \frac{1}{2} \right)^{x} > 4\]
\[2^{- x} > 2^{2}\]
\[- x > 2\]
\[x < - 2.\]
\[Ответ:\ \ x < - 2.\]