\[\boxed{\mathbf{228}\mathbf{.}}\]
\[1)\ 3^{x} > 9\]
\[3^{x} > 3^{2}\ \]
\[x > 2\]
\[Ответ:\ \ x > 2.\]
\[2)\ \left( \frac{1}{2} \right)^{x} > \frac{1}{4}\ \]
\[\left( \frac{1}{2} \right)^{x} > \left( \frac{1}{2} \right)^{2}\ \]
\[x < 2\]
\[Ответ:\ \ x < 2.\]
\[3)\ \left( \frac{1}{4} \right)^{x} < 2\]
\[4^{- x} < 2\]
\[2^{- 2x} < 2^{1}\]
\[- 2x < 1\ \]
\[x > - 0,5\]
\[Ответ:\ \ x > - 0,5.\]
\[4)\ 4^{x} < \frac{1}{2}\]
\[4^{x} < 2^{- 1}\]
\[2^{2x} < 2^{- 1}\]
\[2x < - 1\ \]
\[x < - 0,5\]
\[Ответ:\ \ x < - 0,5.\]
\[5)\ 2^{3x} \geq \frac{1}{2}\]
\[2^{3x} \geq 2^{- 1}\]
\[3x \geq - 1\]
\[x \geq - \frac{1}{3}\]
\[Ответ:\ \ x \geq - \frac{1}{3}.\]
\[6)\ \left( \frac{1}{3} \right)^{x - 1} \leq \frac{1}{9}\]
\[\left( \frac{1}{3} \right)^{x - 1} \leq \left( \frac{1}{3} \right)^{2}\]
\[x - 1 \geq 2\ \]
\[x \geq 3\]
\[Ответ:\ \ x \geq 3.\]