\[\boxed{\mathbf{179}\mathbf{.}}\]
\[1)\ y = \sqrt[3]{1 - x}\]
\[- \infty < x < + \infty\]
\[D(x) = ( - \infty;\ + \infty).\]
\[2)\ y = \sqrt[6]{2 - x^{2}}\]
\[2 - x^{2} \geq 0\]
\[x^{2} \leq 2\]
\[- \sqrt{2} \leq x \leq \sqrt{2}\]
\[D(x) = \left\lbrack - \sqrt{2};\ \sqrt{2} \right\rbrack.\]
\[3)\ y = \left( 3x^{2} + 1 \right)^{- 2} = \frac{1}{\left( 3x^{2} + 1 \right)^{2}}\]
\[3x^{2} + 1 \neq 0\]
\[3x^{2} \neq - 1\]
\[x^{2} \neq - \frac{1}{3} \Longrightarrow при\ любом\ x\]
\[D(x) = ( - \infty;\ + \infty).\]
\[4)\ y = \sqrt{x^{2} - x - 2}\]
\[x^{2} - x - 2 \geq 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{1 - 3}{2} = - 1;\ x_{2} = \frac{1 + 3}{2} = 2\]
\[(x + 1)(x - 2) \geq 0\]
\[x \leq - 1;\text{\ \ }x \geq 2\]
\[D(x) = ( - \infty;\ - 1\rbrack \cup \lbrack 2;\ + \infty).\]