Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 1536

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 1536

\[\boxed{\mathbf{1536}\mathbf{.}}\]

\[1)\ y = - \frac{x^{4}}{4} + x^{2}\]

\[Функция\ четная:\]

\[f( - x) = - \frac{( - x)^{4}}{4} + ( - x)^{2} =\]

\[= - \frac{x^{4}}{4} + x^{2} = f(x).\]

\[f^{'}(x) = - \frac{1}{4}\left( x^{4} \right)^{'} + \left( x^{2} \right)^{'} =\]

\[= - \frac{1}{4} \bullet 4x^{3} + 2x = 2x - x^{3}.\]

\[Промежуток\ возрастания:\]

\[2x - x^{3} > 0\]

\[x\left( 2 - x^{2} \right) > 0\]

\[x\left( x^{2} - 2 \right) < 0\]

\[\left( x + \sqrt{2} \right) \bullet x \bullet \left( x - \sqrt{2} \right) < 0\]

\[x < - \sqrt{2}\text{\ \ }и\ \ 0 < x < \sqrt{2}.\]

\[Промежуток\ убывания:\]

\[- \sqrt{2} < x < 0\ \ и\ \ x > \sqrt{2}.\]

\[x = \pm \sqrt{2} - точки\ максимума;\]

\[x = 0 - точка\ минимума.\]

\[Максимум\ и\ минимум:\]

\[y\left( \pm \sqrt{2} \right) = - \frac{\left( \pm \sqrt{2} \right)^{4}}{4} + \left( \pm \sqrt{2} \right)^{2} =\]

\[= - \frac{4}{4} + 2 = - 1 + 2 = 1;\]

\[y(0) = - \frac{0^{4}}{4} + 0^{2} = - 0 + 0 = 0.\]

\[2)\ y = x^{4} - 2x^{2} - 3\]

\[Функция\ четная:\]

\[f( - x) = ( - x)^{4} - 2( - x)^{2} - 3 =\]

\[= x^{4} - 2x^{2} - 3 = f(x).\]

\[f^{'}(x) = \left( x^{4} \right)^{'} - 2\left( x^{2} \right)^{'} - (3)^{'} =\]

\[f^{'}(x) = 4x^{3} - 2 \bullet 2x - 0 =\]

\[= 4x^{3} - 4x.\]

\[Промежуток\ возрастания:\]

\[4x^{3} - 4x > 0\]

\[x^{3} - x > 0\]

\[x\left( x^{2} - 1 \right) > 0\]

\[(x + 1) \bullet x \bullet (x - 1) > 0\]

\[- 1 < x < 0\ \ и\ \ x > 1.\]

\[Промежуток\ убывания:\]

\[x < - 1\ \ и\ \ 0 < x < 1.\]

\[x = 0 - точка\ максимума;\]

\[x = \pm 1 - точки\ минимума.\]

\[Максимум\ и\ минимум:\]

\[y( \pm 1) = ( \pm 1)^{4} - 2 \bullet ( \pm 1)^{2} - 3 =\]

\[= 1 - 2 - 3 = - 4;\]

\[y(0) = 0^{4} - 2 \bullet 0^{2} - 3 = - 3.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам