\[\boxed{\mathbf{1537}\mathbf{.}}\]
\[1)\ y = \frac{1}{3}x^{3} - x^{2} - 3x + 9\]
\[Ни\ четная,\ ни\ нечетная:\]
\[f( - x) =\]
\[= \frac{1}{3}( - x)^{3} - ( - x)^{2} - 3( - x) + 9 =\]
\[= - \frac{1}{3}x^{3} - x^{2} + 3x + 9.\]
\[f^{'}(x) = \frac{1}{3}\left( x^{3} \right)^{'} - \left( x^{2} \right)^{'} - (3x - 9)^{'} =\]
\[= \frac{1}{3} \bullet 3x^{2} - 2x - 3 = x^{2} - 2x - 3.\]
\[Промежуток\ возрастания:\]
\[x^{2} - 2x - 3 > 0\]
\[D = 4 + 12 = 16\]
\[x_{1} = \frac{2 - 4}{2} = - 1;\]
\[x_{2} = \frac{2 + 4}{2} = 3;\]
\[(x + 1)(x - 3) > 0\]
\[x < - 1\ \ и\ \ x > 3.\]
\[Промежуток\ убывания:\]
\[- 1 < x < 3.\]
\[x = - 1 - точка\ максимума;\]
\[x = 3 - точка\ минимума.\]
\[Максимум\ и\ минимум:\]
\[y( - 1) = \frac{1}{3} \bullet ( - 1)^{3} - ( - 1)^{2} + 3 + 9 =\]
\[= - \frac{1}{3} - 1 + 12 = 11 - \frac{1}{3} = 10\frac{2}{3};\]
\[y(3) = \frac{1}{3} \bullet 3^{3} - 3^{2} - 3 \bullet 3 + 9 =\]
\[= 9 - 9 - 9 + 9 = 0.\]
\[2)\ y = - x^{4} + 6x^{2} - 9\]
\[Функция\ четная:\]
\[f( - x) = - ( - x)^{4} + 6\left( x^{2} \right) - 9 =\]
\[= - x^{4} + 6x^{2} - 9 = f(x).\]
\[f^{'}(x) = - \left( x^{4} \right)^{'} + 6\left( x^{2} \right)^{'} - (9)^{'} =\]
\[= - 4x^{3} + 6 \bullet 2x - 0 = 12x - 4x^{3}.\]
\[Промежуток\ возрастания:\]
\[12x - 4x^{2} > 0\]
\[3x - x^{2} > 0\]
\[x\left( 3 - x^{2} \right) > 0\]
\[x\left( x^{2} - 3 \right) < 0\]
\[\left( x + \sqrt{3} \right) \bullet x \bullet \left( x - \sqrt{3} \right) < 0\]
\[x < - \sqrt{3}\text{\ \ }и\ \ 0 < x < \sqrt{3}.\]
\[Промежуток\ убывания:\]
\[- \sqrt{3} < x < 0\ \ и\ \ x > \sqrt{3}.\]
\[x = \pm \sqrt{3} - точки\ максимума;\]
\[x = 0 - точка\ минимума.\]
\[Максимум\ и\ минимум:\]
\[y\left( \pm \sqrt{3} \right) =\]
\[= - \left( \pm \sqrt{3} \right)^{4} + 6 \bullet \left( \pm \sqrt{3} \right)^{2} - 9 =\]
\[= - 9 + 18 - 9 = 0;\]
\[y(0) = - 0^{4} + 6 \bullet 0^{2} - 9 = - 9.\]