\[\boxed{\mathbf{1527}\mathbf{.}}\]
\[r - радиус\ основания;\]
\[h - высота\ цилиндра.\]
\[Периметр\ сечения\ цилиндра = \text{\ p}:\]
\[2 \bullet (2r + h) = p\]
\[4r + 2h = p\]
\[2h = p - 4r\]
\[h = \frac{p}{2} - 2r.\]
\[V(r) = \pi r^{2} \bullet h = \pi r^{2} \bullet \left( \frac{p}{2} - 2r \right) =\]
\[= \frac{1}{2}\text{pπ}r^{2} - 2\pi r^{3};\]
\[V^{'}(r) = \frac{1}{2}\text{pπ}\left( r^{2} \right)^{'} - 2\pi\left( r^{3} \right)^{'} =\]
\[= \frac{1}{2}p\pi \bullet 2r - 2\pi \bullet 3r^{2} =\]
\[= p\pi r - 6\pi r^{2}.\]
\[Промежуток\ возрастания:\]
\[p\pi r - 6\pi r^{2} > 0\]
\[pr - 6r^{2} > 0\]
\[r \bullet (p - 6r) > 0\]
\[r \bullet (6r - p) < 0\]
\[0 < r < \frac{p}{6}.\]
\[r = \frac{p}{6} - точка\ максимума;\]
\[V\left( \frac{p}{6} \right) = \pi\left( \frac{p}{6} \right)^{2} \bullet \left( \frac{p}{2} - 2 \bullet \frac{p}{6} \right) =\]
\[= \frac{\pi p^{2}}{36} \bullet \left( \frac{3p}{6} - \frac{2p}{6} \right) =\]
\[= \frac{\pi p^{2}}{36} \bullet \frac{p}{6} = \frac{\pi p^{3}}{216}.\]
\[Ответ:\ \ \frac{\pi p^{3}}{216}.\]