\[\boxed{\mathbf{1528}\mathbf{.}}\]
\[r - радиус\ основания;\]
\[h - высота\ цилиндра.\]
\[Диагональ\ осевого\ сечения\ \]
\[цилиндра\ совпадает\ с\ \]
\[диаметром\ шара:\]
\[(2r)^{2} + h^{2} = d^{2}\]
\[4r^{2} + h^{2} = (2R)^{2}\]
\[4r^{2} = 4R^{2} - h^{2}\]
\[r^{2} = R^{2} - \frac{h^{2}}{4}.\]
\[V(h) = \pi r^{2} \bullet h =\]
\[= \pi h \bullet \left( R^{2} - \frac{h^{2}}{4} \right) = \pi hR^{2} - \frac{\pi h^{3}}{4};\]
\[V^{'}(h) = \pi R^{2}(h)^{'} - \frac{\pi}{4}\left( h^{3} \right)^{'} =\]
\[= \pi R^{2} - \frac{3\pi}{4}h^{2}.\]
\[Промежуток\ возрастания:\]
\[\pi R^{2} - \frac{3\pi}{4}h^{2} > 0\]
\[4\pi R^{2} - 3\pi h^{2} > 0\]
\[3\pi h^{2} < 4\pi R^{2}\]
\[h^{2} < \frac{4R^{2}}{3}\]
\[- \frac{2R}{\sqrt{3}} < h < \frac{2R}{\sqrt{3}}.\]
\[h = \frac{2R}{\sqrt{3}} - точка\ максимума;\]
\[r = \sqrt{R^{2} - \frac{h^{2}}{4}} = \sqrt{R^{2} - \frac{4R^{2}}{3 \bullet 4}} =\]
\[= \sqrt{\frac{3R^{2}}{3} - \frac{R^{2}}{3}} = \sqrt{\frac{2R^{2}}{3}} = R\sqrt{\frac{2}{3}}.\]
\[Ответ:\ \ h = \frac{2R}{\sqrt{3}};\ \ r = R\sqrt{\frac{2}{3}}.\]