Решебник по алгебре и начала математического анализа 11 класс Алимов Задание 1526

Авторы:
Год:2020-2021-2022-2023
Тип:учебник
Серия:Алгебра и начала математического анализа, геометрия

Задание 1526

\[\boxed{\mathbf{1526}\mathbf{.}}\]

\[\mathbf{Схематический\ рисунок}\mathbf{:}\]

\[b - длина\ равных\ сторон\ \]

\[основания\ пирамиды;\]

\[c - длина\ его\ основания;\]

\[R - радиус\ основания\ конуса:\]

\[c = 2R \bullet \sin a.\]

\[Величина\ равных\ углов:\]

\[\frac{1}{2} \bullet (\pi - a) = \frac{\pi}{2} - \frac{a}{2}.\]

\[По\ теореме\ синусов:\]

\[\frac{c}{\sin a} = \frac{b}{\sin\left( \frac{\pi}{2} - \frac{a}{2} \right)}\]

\[\frac{c}{\sin a} = \frac{b}{\cos\frac{a}{2}}\]

\[b = \frac{c \bullet \cos\frac{a}{2}}{\sin a} = \frac{2R \bullet \sin a \bullet \cos\frac{a}{2}}{\sin a} =\]

\[= 2R \bullet \cos\frac{a}{2}.\]

\[S(a) = \frac{1}{2} \bullet b \bullet b \bullet \sin a =\]

\[= \frac{4R^{2} \bullet \cos^{2}\frac{a}{2}}{2} \bullet \sin a =\]

\[= 2R^{2} \bullet \cos^{2}\frac{a}{2} \bullet \sin a =\]

\[= 2R^{2} \bullet \frac{1 + \cos a}{2} \bullet \sin a =\]

\[= R^{2} \bullet \left( 1 + \cos a \right) \bullet \sin a;\]

\[= R^{2} \bullet \left( \cos a + \cos^{2}a - \sin^{2}a \right).\]

\[Промежуток\ возрастания:\]

\[\cos^{2}a + \cos a - \sin^{2}a > 0\]

\[\cos^{2}a + \cos a - \left( 1 - \cos^{2}a \right) > 0\]

\[2\cos^{2}a + \cos a - 1 > 0\]

\[D = 1 + 8 = 9\]

\[\cos a_{1} = \frac{- 1 - 3}{2 \bullet 2} = - 1;\]

\[\cos a_{2} = \frac{- 1 + 3}{2 \bullet 2} = \frac{1}{2};\]

\[\left( \cos a + 1 \right)\left( \cos a - \frac{1}{2} \right) > 0\]

\[\cos a < - 1\ и\cos a > \frac{1}{2}.\]

\[1)\ \cos a < - 1\]

\[нет\ корней.\]

\[2)\ \cos a > \frac{1}{2}\]

\[- \arccos\frac{1}{2} + 2\pi n < a < \arccos\frac{1}{2} + 2\pi n\]

\[- \frac{\pi}{3} + 2\pi n < a < \frac{\pi}{3} + 2\pi n.\]

\[a = \frac{\pi}{3} - точка\ максимума.\]

\[Ответ:\ \ \frac{\pi}{3}.\]

Скачать ответ
Есть ошибка? Сообщи нам!

Решебники по другим предметам