\[\boxed{\mathbf{1488}\mathbf{.}}\]
\[1)\ y = x^{2} + 6x + 3\]
\[a > 0 - ветви\ вверх;\]
\[x_{0} = - \frac{b}{2a} = - \frac{6}{2 \bullet 1} = - 3;\]
\[y( - 3) = ( - 3)^{2} + 6 \bullet ( - 3) + 3 =\]
\[= 9 - 18 + 3 = - 6.\]
\[Ответ:\ \ y \in \lbrack - 6;\ + \infty).\]
\[2)\ y = - 2x^{2} + 8x - 1\]
\[a < 0 - ветви\ вниз;\]
\[x_{0} = - \frac{b}{2a} = - \frac{8}{2 \bullet ( - 2)} = \frac{8}{4} = 2;\]
\[y(2) = - 2 \bullet 2^{2} + 8 \bullet 2 - 1 =\]
\[= - 8 + 16 - 1 = 7.\]
\[Ответ:\ \ y \in ( - \infty;\ 7\rbrack.\]
\[3)\ y = 2 + \frac{2}{x}\]
\[\frac{2}{x} = y - 2\]
\[2 = x(y - 2)\]
\[x = \frac{2}{y - 2}.\]
\[y - 2 \neq 0\]
\[y \neq 2.\]
\[Ответ:\ \ y \neq 2.\]