\[\boxed{\mathbf{1489}\mathbf{.}}\]
\[1)\ y = 0,5 + \sin\left( x - \frac{\pi}{4} \right)\]
\[- 1 \leq \sin\left( x - \frac{\pi}{4} \right) \leq 1\]
\[- 0,5 \leq 0,5 + \sin\left( x - \frac{\pi}{4} \right) \leq 1,5\]
\[Ответ:\ \ - 0,5 \leq y \leq 1,5.\]
\[2)\ y = 0,5\cos x + \sin x\]
\[\sin\left( \arccos\frac{0,5}{\sqrt{1,25}} \right) =\]
\[= \sqrt{1 - \cos^{2}\left( \arccos\frac{0,5}{\sqrt{1,25}} \right)} =\]
\[= \sqrt{1 - \left( \frac{0,5}{\sqrt{1,25}} \right)^{2}} =\]
\[= \sqrt{\frac{1,25}{1,25} - \frac{0,25}{1,25}} =\]
\[= \sqrt{\frac{1}{1,25}} = \frac{1}{\sqrt{1,25}}.\]
\[y = 0,5\cos x + \sin x =\]
\[= \sqrt{1,25} \bullet \cos\left( \arccos\frac{0,5}{\sqrt{1,25}} - x \right).\]
\[Область\ значений:\]
\[- 1 \leq \cos a \leq 1\]
\[- \sqrt{1,25} \leq \sqrt{1,25} \bullet \cos a \leq \sqrt{1,25}.\]
\[Ответ:\ \ - \sqrt{1,25} \leq y \leq \sqrt{1,25}.\]