\[\boxed{\mathbf{1487}\mathbf{.}}\]
\[1)\ y = \sqrt{\log_{0,8}\left( x^{2} - 5x + 7 \right)}\]
\[x^{2} - 5x + 7 > 0\]
\[D = 25 - 49 = - 24 < 0\]
\[a > 0;\]
\[x - любое\ число.\]
\[Имеет\ смысл\ при:\]
\[\log_{0,8}\left( x^{2} - 5x + 7 \right) \geq 0\]
\[\log_{0,8}\left( x^{2} - 5x + 7 \right) \geq \log_{0,8}{0,8}^{0}\]
\[x^{2} - 5x + 7 \leq 1\]
\[x^{2} - 5x + 6 \leq 0\]
\[D = 25 - 24 = 1\]
\[x_{1} = \frac{5 - 1}{2} = 2;\]
\[x_{2} = \frac{5 + 1}{2} = 3;\]
\[(x - 2)(x - 3) \leq 0\]
\[2 \leq x \leq 3.\]
\[Ответ:\ \ x \in \lbrack 2;\ 3\rbrack.\]
\[2)\ y = \sqrt{\log_{0,5}\left( x^{2} - 9 \right)}\]
\[Имеет\ смысл\ при:\]
\[x^{2} - 9 > 0\]
\[(x + 3)(x - 3) > 0\]
\[x < - 3\ и\ x > 3.\]
\[\log_{0,5}\left( x^{2} - 9 \right) \geq 0\]
\[\log_{0,5}\left( x^{2} - 9 \right) \geq \log_{0,5}(0,5)^{0}\]
\[x^{2} - 9 \leq 1\]
\[x^{2} \leq 10\]
\[- \sqrt{10} \leq x \leq \sqrt{10}.\]
\[Ответ:\ \ \]
\[x \in \left\lbrack - \sqrt{10};\ - 3 \right) \cup \left( 3;\ \sqrt{10} \right\rbrack.\]