\[\boxed{\mathbf{1486}\mathbf{.}}\]
\[1)\ y = \sqrt{\frac{x^{2} - 6x - 16}{x^{2} - 12x + 11}}\]
\[x^{2} - 12x + 11 = 0\]
\[D = 144 - 44 = 100\]
\[x_{1} = \frac{12 - 10}{2} = 1;\ \]
\[x_{2} = \frac{12 + 10}{2} = 11;\]
\[(x - 1)(x - 11) = 0.\]
\[x^{2} - 6x - 16 = 0\]
\[D = 36 + 64 = 100\]
\[x_{1} = \frac{6 - 10}{2} = - 2;\]
\[x_{2} = \frac{6 + 10}{2} = 8;\]
\[(x + 2)(x - 8) = 0.\]
\[Получим:\]
\[y = \sqrt{\frac{(x + 2)(x - 8)}{(x - 1)(x - 11)}}.\]
\[Имеет\ смысл\ при:\]
\[(x + 2)(x - 1)(x - 8)(x - 11) \geq 0\]
\[x \leq - 2\ \ \ \]
\[1 < x \leq 8\]
\[x > 11.\]
\[Ответ:\ \ \]
\[x \in ( - \infty;\ - 2\rbrack \cup (1;\ 8\rbrack \cup (11;\ + \infty).\]
\[2)\ y = \sqrt{\log_{\frac{1}{2}}(x - 3) - 1}\]
\[x - 3 > 0\]
\[x > 3.\]
\[Имеет\ смысл\ при:\]
\[\log_{\frac{1}{2}}(x - 3) - 1 \geq 0\]
\[\log_{\frac{1}{2}}(x - 3) \geq 0\]
\[\log_{\frac{1}{2}}(x - 3) \geq \log_{\frac{1}{2}}\left( \frac{1}{2} \right)^{1}\]
\[x - 3 \leq \frac{1}{2}\]
\[x \leq 3\frac{1}{2}.\]
\[Ответ:\ \ x \in \left( 3;\ 3\frac{1}{2} \right\rbrack.\]