\[\boxed{\mathbf{1444}\mathbf{.}}\]
\[Пусть\ x\ км\text{/}ч - скорость\ \]
\[течения\ реки;\]
\[(x + 48)\ км\text{/}ч - скорость\ \]
\[движения\ лодки\ по\ течению\ \]
\[реки;\]
\[\frac{17}{x + 48}\ ч - время,\ затраченное\ \]
\[на\ путь\ лодкой;\]
\[\frac{17}{x}\ ч - время,\ затраченное\ на\ \]
\[путь\ плотом.\]
\[Лодка\ отправилась\ на\ 5\ часов\ \]
\[20\ минут\ позже,\ чем\ плот.\]
\[Составим\ уравнение:\]
\[\frac{17}{x} - \frac{17}{x + 48} = 5 + \frac{20}{60}\]
\[\frac{17}{x} - \frac{17}{x + 48} = \frac{16}{3}\ \ \ | \bullet 3x(x + 48)\]
\[17 \bullet 3(x + 48) - 17 \bullet 3x = 16x(x + 48)\]
\[51x + 2448 - 51x = 16x^{2} + 768x\]
\[16x^{2} + 768x - 2448 = 0\ \ \ \ \ |\ :16\]
\[x^{2} + 48x - 153 = 0\]
\[D = 2304 + 612 = 2916\]
\[x_{1} = \frac{- 48 - 54}{2} = - 51;\]
\[x_{2} = \frac{- 48 + 54}{2} = 3.\]
\[x = 3\ \left( км\text{/}ч \right) - скорость\ течения.\]
\[Ответ:\ \ 3\ км\text{/}ч.\]