\[\boxed{\mathbf{144.}}\]
\[1)\ |2x - 1| = 3\ \ и\ \ 2x - 1 = 3\]
\[Решим\ первое\ уравнение:\]
\[|2x - 1| = 3;\]
\[\left\{ \begin{matrix} 2x - 1 = 3\ \ \ \\ 2x - 1 = - 3 \\ \end{matrix} \right.\ \Longrightarrow \left\{ \begin{matrix} 2x = 4\ \ \ \\ 2x = - 2 \\ \end{matrix} \right.\ \ \Longrightarrow \ \]
\[\Longrightarrow \left\{ \begin{matrix} x = 2\ \ \ \\ x = - 1 \\ \end{matrix} \right.\ .\]
\[Решим\ второе\ уравнение:\]
\[2x - 1 = 3\]
\[2x = 4\]
\[x = 2.\]
\[Ответ:\ \ не\ равносильны.\]
\[2)\ \frac{3x - 2}{3} - \frac{4 - x}{2} - \frac{3x - 5}{6} =\]
\[= 2x - 2\ \ и\ \ 2x + 3 = \frac{10}{3}\]
\[Решим\ первое\ уравнение;\]
\[6x - 4 - 12 + 3x - 3x + 5 =\]
\[= 12x - 12\]
\[6x - 11 = 12x - 12\]
\[6x = 1\]
\[x = \frac{1}{6}.\]
\[Решим\ второе\ уравнение:\]
\[2x + 3 = \frac{10}{3}\ \ \ \ \ \ \ \ \ \ | \bullet 3\]
\[3(2x + 3) = 10\]
\[6x + 9 = 10\]
\[6x = 1\]
\[x = \frac{1}{6}.\]
\[Ответ:\ \ равносильны.\]