\[\boxed{\mathbf{145.}}\]
\[1)\ 2x - 1 = 4 - 1,5x\ \ и\ \ \]
\[3,5x - 5 = 0;\]
\[2x - 1 = 4 - 1,5x\]
\[2x + 1,5x - 1 - 4 = 0\]
\[3,5x - 5 = 0\]
\[Ответ:\ \ равносильны.\]
\[2)\ x(x - 1) = 2x + 5\ \ и\ \ \]
\[x^{2} - 3x - 5 = 0;\]
\[x(x - 1) = 2x + 5\]
\[x^{2} - x - 2x - 5 = 0\]
\[x^{2} - 3x - 5 = 0\]
\[Ответ:\ \ равносильны.\]
\[3)\ 2^{3x + 1} = 2^{- 3}\text{\ \ }и\ \ 3x + 1 = - 3;\]
\[2^{3x + 1} = 2^{- 3}\]
\[3x + 1 = - 3.\]
\[Ответ:\ \ равносильны.\]
\[4)\ \sqrt{x + 2} = 3\ \ и\ \ x + 2 = 9\]
\[Решим\ первое\ уравнение:\]
\[\sqrt{x + 2} = 3\]
\[x + 2 = 3^{2}\]
\[x + 2 = 9\]
\[x = 7.\]
\[Решим\ второе\ уравнение:\]
\[x + 2 = 9\]
\[x = 7.\]
\[Ответ:\ \ равносильны.\]