\[\boxed{\mathbf{143.}}\]
\[1)\ \frac{x + 3}{2 + x^{2}} < 3\]
\[x + 3 < 3\left( 2 + x^{2} \right)\]
\[x + 3 < 6 + 3x^{2}\]
\[3x^{2} - x + 3 > 0\]
\[D = 1^{2} - 4 \bullet 3 \bullet 3 = 1 - 36 =\]
\[= - 35 < 0\]
\[a = 3 > 0 \Longrightarrow верно\ \]
\[при\ любом\ \text{x.}\]
\[Ответ:\ \ x \in R.\]
\[2)\ \frac{x - 2}{5 - x} > 1\]
\[\frac{x - 2}{5 - x} - 1 > 0\]
\[\frac{x - 2}{5 - x} - \frac{5 - x}{5 - x} > 0\]
\[\frac{2x - 7}{5 - x} > 0\]
\[(2x - 7)(5 - x) > 0\]
\[(2x - 7)(x - 5) < 0\]
\[Ответ:\ \ 3,5 < x < 5.\]