\[\boxed{\mathbf{142.}}\]
\[1)\ \frac{x}{x + 1} + \frac{2x}{x - 1} = \frac{4x}{x^{2} - 1}\]
\[\frac{x(x - 1) + 2x(x + 1)}{(x - 1)(x + 1)} = \frac{4x}{x^{2} - 1}\]
\[\frac{x^{2} - x + 2x^{2} + 2x}{x^{2} - 1} - \frac{4x}{x^{2} - 1} = 0\]
\[\frac{3x^{2} - 3x}{x^{2} - 1} = 0\]
\[\frac{3x(x - 1)}{(x - 1)(x + 1)} = 0\]
\[\frac{3x}{x + 1} = 0;\ \ \ \ x \neq - 1\]
\[3x = 0\]
\[x = 0.\]
\[Ответ:\ \ x = 0.\]
\[2)\ \frac{x - 1}{x - 2} - \frac{2}{x} = \frac{1}{x - 2}\]
\[\frac{x(x - 1) - 2(x - 2)}{x(x - 2)} = \frac{x}{x(x - 2)}\]
\[\frac{x^{2} - x - 2x + 4}{x(x - 2)} - \frac{x}{x(x - 2)} = 0\]
\[\frac{x^{2} - 4x + 4}{x(x - 2)} = 0\]
\[\frac{(x - 2)^{2}}{x(x - 2)} = 0;\ \ \ \ \ x \neq 2;\ \ \ \ x \neq 0\]
\[x = 2.\]
\[Ответ:\ \ корней\ нет.\]
\[3)\ (x - 3)(x - 5) = 3(x - 5)\]
\[(x - 3)(x - 5) - 3(x - 5) = 0\]
\[(x - 5)(x - 3 - 3) = 0\]
\[(x - 5)(x - 6) = 0\]
\[x = 5;\ \ \ x = 6.\]
\[Ответ:\ \ x = 5;\ \ x = 6.\]
\[x - 2 = 2\]
\[\ x = 4.\]
\[Ответ:\ \ x = 4.\]