\[\boxed{\mathbf{140.}}\]
\[1)\ 2x - 1 \geq 2\ \ и\ \ 2(x - 1) \geq 1\]
\[2(x - 1) \geq 1\]
\[2x - 2 \geq 1\]
\[2x - 1 \geq 2.\]
\[Ответ:\ \ равносильны.\]
\[2)\ (x - 1)(x + 2) < 0\ \ и\ \ \]
\[x^{2} + x < 2\]
\[Решим\ первое\ неравенство:\]
\[(x - 1)(x + 2) < 0\]
\[(x + 2)(x - 1) < 0\]
\[- 2 < x < 1.\]
\[Решим\ второе\ неравенство:\]
\[x^{2} + x < 2\]
\[x^{2} + x - 2 < 0\]
\[D = 1^{2} + 4 \bullet 2 = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2} = - 2;\text{\ \ }\]
\[x_{2} = \frac{- 1 + 3}{2} = 1\]
\[(x + 2)(x - 1) < 0\]
\[- 2 < x < 1.\]
\[Ответ:\ \ равносильны.\]
\[3)\ (x - 2)(x + 1) < 3x + 3\ \ и\ \ \]
\[x - 2 < 3\]
\[Решим\ первое\ неравенство:\]
\[(x - 2)(x + 1) < 3x + 3\]
\[x^{2} + x - 2x - 2 - 3x - 3 < 0\]
\[x^{2} - 4x - 5 < 0\]
\[D = 4^{2} + 4 \bullet 5 = 16 + 20 = 36\]
\[x_{1} = \frac{4 - 6}{2} = - 1;\text{\ \ }\]
\[x_{2} = \frac{4 + 6}{2} = 5\]
\[(x + 1)(x - 5) < 0\]
\[- 1 < x < 5.\]
\[Решим\ второе\ неравенство:\]
\[x - 2 < 3\]
\[x < 3 + 2\]
\[x < 5.\]
\[Ответ:\ \ не\ равносильны.\]
\[4)\ x(x + 3) \geq 2x\ \ и\ \ \]
\[x^{2}(x + 3) \geq 2x^{2}\]
\[Решим\ первое\ неравенство:\]
\[x(x + 3) \geq 2x\]
\[x^{2} + 3x - 2x \geq 0\]
\[x^{2} + x \geq 0\]
\[(x + 1) \bullet x \geq 0\]
\[x \leq - 1;\text{\ \ }x \geq 0.\]
\[Решим\ второе\ неравенство:\]
\[x^{2}(x + 3) \geq 2x^{2}\]
\[x^{2} \bullet (x + 3) - x^{2} \bullet 2 \geq 0\]
\[x^{2} \bullet (x + 3 - 2) \geq 0\]
\[x^{2} \bullet (x + 1) \geq 0\]
\[x = 0;\ \ x \geq - 1.\]
\[Ответ:\ \ не\ равносильны.\]