\[\boxed{\mathbf{138.}}\]
\[1)\ (x + 7) \bullet 3 = 2x + 14\]
\[3x + 21 = 2x + 14\]
\[x = 14 - 21\]
\[x = - 7\]
\[Ответ:\ \ x = - 7.\]
\[2)\ x^{2} + \frac{1}{x^{2} - 4} = 4 + \frac{1}{x^{2} - 4};\ \ \ \ \ \ \ \]
\[x^{2} - 4 \neq 0;\ \ x \neq \pm 2\]
\[x^{2} = 4\]
\[x = \pm \sqrt{4}\]
\[x = \pm 2.\]
\[Ответ:\ \ корней\ нет.\]
\[3)\ \frac{x - 2}{x^{2} - 1} = \frac{1 - 2x}{x^{2} - 1};\ \ \ \ \ \ \ \]
\[x^{2} - 1 \neq 0;\ \ \ \ x \neq \pm 1\]
\[x - 2 = 1 - 2x\]
\[3x = 3\]
\[x = 1.\]
\[Ответ:\ \ корней\ нет.\]
\[4)\ \frac{5x - 15}{(x - 3)(x + 2)} = \frac{2}{x + 2};\ \ \ \ \ \ \ \]
\[x \neq 3;\ \ x \neq - 2\]
\[\frac{5(x - 3)}{(x - 3)(x + 2)} = \frac{2}{x + 2}\]
\[\frac{5}{x + 2} = \frac{2}{x + 2}\]
\[5 = 2.\]
\[Ответ:\ \ корней\ нет.\]