\[\boxed{\mathbf{1353}\mathbf{.}}\]
\[1)\log_{2}(2x - 18) + \log_{2}(x - 9) = 5\]
\[\log_{2}\left( (2x - 18)(x - 9) \right) = \log_{2}2^{5}\]
\[\log_{2}\left( 2x^{2} - 18x - 18x + 162 \right) = \log_{2}32\]
\[2x^{2} - 36x + 162 = 32\]
\[2x^{2} - 36x + 130 = 0\]
\[x^{2} - 18x + 65 = 0\]
\[D = 324 - 260 = 64\]
\[x_{1} = \frac{18 - 8}{2} = 5;\]
\[x_{2} = \frac{18 + 8}{2} = 13.\]
\[ОДЗ:\]
\[2x - 18 > 0\]
\[x > 9.\]
\[x - 9 > 0\]
\[x > 9.\]
\[Ответ:\ \ x = 13.\]
\[2)\lg\left( x^{2} + 19 \right) - \lg(x + 1) = 1\]
\[\lg\frac{x^{2} + 19}{x + 1} = \lg 10\]
\[\frac{x^{2} + 19}{x + 1} = 10\ \ \ \ \ | \bullet (x + 1)\ \]
\[x^{2} + 19 = 10(x + 1)\]
\[x^{2} + 19 = 10x + 10\]
\[x^{2} - 10x + 9 = 0\]
\[D = 100 - 36 = 64\]
\[x_{1} = \frac{10 - 8}{2} = 1;\]
\[x_{2} = \frac{10 + 8}{2} = 9.\]
\[ОДЗ:\]
\[x^{2} + 19 > 0\]
\[при\ любом\ \text{x.}\]
\[x + 1 > 0\]
\[x > - 1.\]
\[Ответ:\ \ x_{1} = 1;\ \ x_{2} = 9.\]