\[\boxed{\mathbf{1352}\mathbf{.}}\]
\[1)\ \lg\left( \frac{1}{2} + x \right) = \lg\frac{1}{2} - \lg x\]
\[\lg\left( \frac{1 + 2x}{2} \right) = \lg\frac{1}{2x}\]
\[\frac{1 + 2x}{2} = \frac{1}{2x}\ \ \ \ \ | \bullet 2x\]
\[x(1 + 2x) = 1\]
\[2x^{2} + x - 1 = 0\]
\[D = 1 + 8 = 9\]
\[x_{1} = \frac{- 1 - 3}{2 \bullet 2} = - 1;\ \]
\[x_{2} = \frac{- 1 + 3}{2 \bullet 2} = \frac{1}{2}.\]
\[Имеет\ смысл:\]
\[\frac{1}{2} + x > 0\]
\[x > - \frac{1}{2};\]
\[x > 0.\]
\[Ответ:\ \ x = \frac{1}{2}.\]
\[2)\ 2\lg x = - \lg\frac{1}{6 - x^{2}}\]
\[\lg x^{2} = \lg\left( 6 - x^{2} \right)\]
\[x^{2} = 6 - x^{2}\]
\[2x^{2} = 6\]
\[x^{2} = 3\]
\[x = \pm \sqrt{3}.\]
\[Имеет\ смысл:\]
\[6 - x^{2} > 0\]
\[- \sqrt{6} < x < \sqrt{6};\]
\[x > 0.\]
\[Ответ:\ \ x = \sqrt{3}.\]